Integrating biocomputational techniques for Breast cancer drug discovery via the HER-2, BCRA, VEGF and ER protein targets
Computational modelling remains an indispensable technique in drug discovery. With myriad of high computing resources, and improved modelling algorithms, there has been a high-speed in the drug development cycle with promising success rate compared to the traditional route. For example, lapatinib; a...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-01, Vol.168, p.107737-107737, Article 107737 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computational modelling remains an indispensable technique in drug discovery. With myriad of high computing resources, and improved modelling algorithms, there has been a high-speed in the drug development cycle with promising success rate compared to the traditional route. For example, lapatinib; a well-known anticancer drug with clinical applications was discovered with computational drug design techniques. Similarly, molecular modelling has been applied to various disease areas ranging from cancer to neurodegenerative diseases. The techniques ranges from high-throughput virtual screening, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) to molecular dynamics simulation. This review focuses on the application of computational modelling tools in the identification of drug candidates for Breast cancer. First, we begin with a succinct overview of molecular modelling in the drug discovery process. Next, we take note of special efforts on the developments and applications of combining these techniques with particular emphasis on possible breast cancer therapeutic targets such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), breast cancer gene 1 (BRCA1), and breast cancer gene 2 (BRCA2). Finally, we discussed the search for covalent inhibitors against these receptors using computational techniques, advances, pitfalls, possible solutions, and future perspectives. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2023.107737 |