Spin-Direction-Spin Coupling of Quasiguided Modes in Plasmonic Crystals
We report an unusual spin-direction-spin coupling phenomenon of light using the leaky quasiguided modes of a waveguided plasmonic crystal. This is demonstrated as simultaneous input spin-dependent directional guiding of waves (spin-direction coupling) and wave-vector-dependent spin acquisition (dire...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-11, Vol.131 (19), p.193803-193803, Article 193803 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report an unusual spin-direction-spin coupling phenomenon of light using the leaky quasiguided modes of a waveguided plasmonic crystal. This is demonstrated as simultaneous input spin-dependent directional guiding of waves (spin-direction coupling) and wave-vector-dependent spin acquisition (direction-spin coupling) of the scattered light. These effects, manifested as the forward and the inverse spin Hall effect of light in the far field, and other accompanying spin-orbit interaction effects are observed and analyzed using a momentum (k) domain polarization Mueller matrix. Resonance-enabled enhancement of these effects is also demonstrated by utilizing the spectral Fano resonance of the hybridized modes. The fundamental origin and the unconventional manifestation of the spin-direction-spin coupling phenomenon from a relatively simple system, ability to probe and interpret the resulting spin-orbit phenomena in the far field through momentum-domain polarization analysis, and their regulated control in plasmonic-photonic crystals open up exciting avenues in spin-orbit-photonic research. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.193803 |