Methods in regression analysis in surgical oncology research‐best practice guidelines

Background Using real working examples, we provide strategies and address challenges in linear and logistic regression to demonstrate best practice guidelines and pitfalls of regression modeling in surgical oncology research. Methods To demonstrate our best practices, we reviewed patients who underw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of surgical oncology 2024-01, Vol.129 (1), p.183-193
Hauptverfasser: Boe, Lillian, Vingan, Perri S., Kim, Minji, Zhang, Kevin K., Rochlin, Danielle, Matros, Evan, Stern, Carrie, Nelson, Jonas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Using real working examples, we provide strategies and address challenges in linear and logistic regression to demonstrate best practice guidelines and pitfalls of regression modeling in surgical oncology research. Methods To demonstrate our best practices, we reviewed patients who underwent tissue expander breast reconstruction between 2019 and 2021. We assessed predictive factors that affect BREAST‐Q Physical Well‐Being of the Chest (PWB‐C) scores at 2 weeks with linear regression modeling and overall complications and malrotation with logistic regression modeling. Model fit and performance were assessed. Results The 1986 patients were included in the analysis. In linear regression, age [β = 0.18 (95% CI: 0.09, 0.28); p 
ISSN:0022-4790
1096-9098
1096-9098
DOI:10.1002/jso.27533