Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck

Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2024-07, Vol.37 (3), p.439-447
Hauptverfasser: Fujima, Noriyuki, Nakagawa, Junichi, Kameda, Hiroyuki, Ikebe, Yohei, Harada, Taisuke, Shimizu, Yukie, Tsushima, Nayuta, Kano, Satoshi, Homma, Akihiro, Kwon, Jihun, Yoneyama, Masami, Kudo, Kohsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 3
container_start_page 439
container_title Magma (New York, N.Y.)
container_volume 37
creator Fujima, Noriyuki
Nakagawa, Junichi
Kameda, Hiroyuki
Ikebe, Yohei
Harada, Taisuke
Shimizu, Yukie
Tsushima, Nayuta
Kano, Satoshi
Homma, Akihiro
Kwon, Jihun
Yoneyama, Masami
Kudo, Kohsuke
description Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. Results Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items ( p  
doi_str_mv 10.1007/s10334-023-01129-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892658624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892658624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6b346b4cee08802c825d1e560880d25ec39b22e55d0e1a4d1cfdb8a7ee2b80e43</originalsourceid><addsrcrecordid>eNp9UblOxDAQtRCI-wcokEsag48k65QIcUkr0UBtOfZk10tiL7YD4iP4ZxIWEBXVzOgdo5mH0Amj54zS2UViVIiCUC4IZYzXpNhC-0yUnMiqYtt_-j10kNKKUs5KKnbRnpjVsq4530cf9_06hlfowWccWux6vQD8MujO5XfsPLaubYfkgidv4BbLDPaL4_wCv7m8xH2w0JFGpxGwAGvcgY5-giOY4FOOg8mjHLchYnjV3aCnMU3L8hLwErTF2lvswTwfoZ1WdwmOv-sherq5fry6I_OH2_uryzkxophlUjWiqJrCAFApKTeSl5ZBWU2T5SUYUTecQ1laCkwXlpnWNlLPAHgjKRTiEJ1tfMfbXwZIWfUuGeg67SEMSXFZ86qUFZ-ofEM1MaQUoVXrOD4gvitG1RSD2sSgxhjUVwxqEp1--w9ND_ZX8vP3kSA2hDRCfgFRrcIQ_Xjzf7af3eaWEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892658624</pqid></control><display><type>article</type><title>Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Fujima, Noriyuki ; Nakagawa, Junichi ; Kameda, Hiroyuki ; Ikebe, Yohei ; Harada, Taisuke ; Shimizu, Yukie ; Tsushima, Nayuta ; Kano, Satoshi ; Homma, Akihiro ; Kwon, Jihun ; Yoneyama, Masami ; Kudo, Kohsuke</creator><creatorcontrib>Fujima, Noriyuki ; Nakagawa, Junichi ; Kameda, Hiroyuki ; Ikebe, Yohei ; Harada, Taisuke ; Shimizu, Yukie ; Tsushima, Nayuta ; Kano, Satoshi ; Homma, Akihiro ; Kwon, Jihun ; Yoneyama, Masami ; Kudo, Kohsuke</creatorcontrib><description>Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. Results Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items ( p  &lt; 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items ( p  = 0.002 ~  p  &lt; 0.001). Discussion DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.</description><identifier>ISSN: 1352-8661</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-023-01129-4</identifier><identifier>PMID: 37989922</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Basic Science - Diffusion ; Biomedical Engineering and Bioengineering ; Computer Appl. in Life Sciences ; Deep Learning ; Diffusion Magnetic Resonance Imaging - methods ; Female ; Head - diagnostic imaging ; Head and Neck Neoplasms - diagnostic imaging ; Health Informatics ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Neck - diagnostic imaging ; Parotid Gland - diagnostic imaging ; Radiology ; Research Article ; Retrospective Studies ; Signal-To-Noise Ratio ; Solid State Physics</subject><ispartof>Magma (New York, N.Y.), 2024-07, Vol.37 (3), p.439-447</ispartof><rights>The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6b346b4cee08802c825d1e560880d25ec39b22e55d0e1a4d1cfdb8a7ee2b80e43</citedby><cites>FETCH-LOGICAL-c347t-6b346b4cee08802c825d1e560880d25ec39b22e55d0e1a4d1cfdb8a7ee2b80e43</cites><orcidid>0000-0001-9021-347X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-023-01129-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-023-01129-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37989922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujima, Noriyuki</creatorcontrib><creatorcontrib>Nakagawa, Junichi</creatorcontrib><creatorcontrib>Kameda, Hiroyuki</creatorcontrib><creatorcontrib>Ikebe, Yohei</creatorcontrib><creatorcontrib>Harada, Taisuke</creatorcontrib><creatorcontrib>Shimizu, Yukie</creatorcontrib><creatorcontrib>Tsushima, Nayuta</creatorcontrib><creatorcontrib>Kano, Satoshi</creatorcontrib><creatorcontrib>Homma, Akihiro</creatorcontrib><creatorcontrib>Kwon, Jihun</creatorcontrib><creatorcontrib>Yoneyama, Masami</creatorcontrib><creatorcontrib>Kudo, Kohsuke</creatorcontrib><title>Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. Results Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items ( p  &lt; 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items ( p  = 0.002 ~  p  &lt; 0.001). Discussion DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Basic Science - Diffusion</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Deep Learning</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Female</subject><subject>Head - diagnostic imaging</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Neck - diagnostic imaging</subject><subject>Parotid Gland - diagnostic imaging</subject><subject>Radiology</subject><subject>Research Article</subject><subject>Retrospective Studies</subject><subject>Signal-To-Noise Ratio</subject><subject>Solid State Physics</subject><issn>1352-8661</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UblOxDAQtRCI-wcokEsag48k65QIcUkr0UBtOfZk10tiL7YD4iP4ZxIWEBXVzOgdo5mH0Amj54zS2UViVIiCUC4IZYzXpNhC-0yUnMiqYtt_-j10kNKKUs5KKnbRnpjVsq4530cf9_06hlfowWccWux6vQD8MujO5XfsPLaubYfkgidv4BbLDPaL4_wCv7m8xH2w0JFGpxGwAGvcgY5-giOY4FOOg8mjHLchYnjV3aCnMU3L8hLwErTF2lvswTwfoZ1WdwmOv-sherq5fry6I_OH2_uryzkxophlUjWiqJrCAFApKTeSl5ZBWU2T5SUYUTecQ1laCkwXlpnWNlLPAHgjKRTiEJ1tfMfbXwZIWfUuGeg67SEMSXFZ86qUFZ-ofEM1MaQUoVXrOD4gvitG1RSD2sSgxhjUVwxqEp1--w9ND_ZX8vP3kSA2hDRCfgFRrcIQ_Xjzf7af3eaWEg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fujima, Noriyuki</creator><creator>Nakagawa, Junichi</creator><creator>Kameda, Hiroyuki</creator><creator>Ikebe, Yohei</creator><creator>Harada, Taisuke</creator><creator>Shimizu, Yukie</creator><creator>Tsushima, Nayuta</creator><creator>Kano, Satoshi</creator><creator>Homma, Akihiro</creator><creator>Kwon, Jihun</creator><creator>Yoneyama, Masami</creator><creator>Kudo, Kohsuke</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9021-347X</orcidid></search><sort><creationdate>20240701</creationdate><title>Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck</title><author>Fujima, Noriyuki ; Nakagawa, Junichi ; Kameda, Hiroyuki ; Ikebe, Yohei ; Harada, Taisuke ; Shimizu, Yukie ; Tsushima, Nayuta ; Kano, Satoshi ; Homma, Akihiro ; Kwon, Jihun ; Yoneyama, Masami ; Kudo, Kohsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6b346b4cee08802c825d1e560880d25ec39b22e55d0e1a4d1cfdb8a7ee2b80e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Basic Science - Diffusion</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Deep Learning</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Female</topic><topic>Head - diagnostic imaging</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Neck - diagnostic imaging</topic><topic>Parotid Gland - diagnostic imaging</topic><topic>Radiology</topic><topic>Research Article</topic><topic>Retrospective Studies</topic><topic>Signal-To-Noise Ratio</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujima, Noriyuki</creatorcontrib><creatorcontrib>Nakagawa, Junichi</creatorcontrib><creatorcontrib>Kameda, Hiroyuki</creatorcontrib><creatorcontrib>Ikebe, Yohei</creatorcontrib><creatorcontrib>Harada, Taisuke</creatorcontrib><creatorcontrib>Shimizu, Yukie</creatorcontrib><creatorcontrib>Tsushima, Nayuta</creatorcontrib><creatorcontrib>Kano, Satoshi</creatorcontrib><creatorcontrib>Homma, Akihiro</creatorcontrib><creatorcontrib>Kwon, Jihun</creatorcontrib><creatorcontrib>Yoneyama, Masami</creatorcontrib><creatorcontrib>Kudo, Kohsuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujima, Noriyuki</au><au>Nakagawa, Junichi</au><au>Kameda, Hiroyuki</au><au>Ikebe, Yohei</au><au>Harada, Taisuke</au><au>Shimizu, Yukie</au><au>Tsushima, Nayuta</au><au>Kano, Satoshi</au><au>Homma, Akihiro</au><au>Kwon, Jihun</au><au>Yoneyama, Masami</au><au>Kudo, Kohsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>37</volume><issue>3</issue><spage>439</spage><epage>447</epage><pages>439-447</pages><issn>1352-8661</issn><eissn>1352-8661</eissn><abstract>Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. Results Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items ( p  &lt; 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items ( p  = 0.002 ~  p  &lt; 0.001). Discussion DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37989922</pmid><doi>10.1007/s10334-023-01129-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9021-347X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1352-8661
ispartof Magma (New York, N.Y.), 2024-07, Vol.37 (3), p.439-447
issn 1352-8661
1352-8661
language eng
recordid cdi_proquest_miscellaneous_2892658624
source MEDLINE; SpringerLink Journals
subjects Adult
Aged
Aged, 80 and over
Basic Science - Diffusion
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Deep Learning
Diffusion Magnetic Resonance Imaging - methods
Female
Head - diagnostic imaging
Head and Neck Neoplasms - diagnostic imaging
Health Informatics
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Imaging
Male
Medicine
Medicine & Public Health
Middle Aged
Neck - diagnostic imaging
Parotid Gland - diagnostic imaging
Radiology
Research Article
Retrospective Studies
Signal-To-Noise Ratio
Solid State Physics
title Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20image%20quality%20in%20diffusion-weighted%20imaging%20with%20model-based%20deep%20learning%20reconstruction%20for%20evaluations%20of%20the%20head%20and%20neck&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Fujima,%20Noriyuki&rft.date=2024-07-01&rft.volume=37&rft.issue=3&rft.spage=439&rft.epage=447&rft.pages=439-447&rft.issn=1352-8661&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-023-01129-4&rft_dat=%3Cproquest_cross%3E2892658624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892658624&rft_id=info:pmid/37989922&rfr_iscdi=true