Effect of the Specific Heat Ratio on the Aerodynamic Performance of Turbomachinery

Many gases, including carbon dioxide and argon, have been considered as alternative working fluids to air in a number of design studies for closed and semi-closed gas turbine engines. In many of these studies, it has been assumed that if the gas constant R and specific heat ratio γ are included in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2005-10, Vol.127 (4), p.773-780
Hauptverfasser: Roberts, Stephen K., Sjolander, Steen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many gases, including carbon dioxide and argon, have been considered as alternative working fluids to air in a number of design studies for closed and semi-closed gas turbine engines. In many of these studies, it has been assumed that if the gas constant R and specific heat ratio γ are included in the speed and flow parameters, the compressor map or turbine characteristic is applicable to other working fluids. However, similarity arguments show that the isentropic exponent itself is a criterion of similarity and that the turbomachinery characteristics, even when appropriately nondimensionalized, will, in principle, vary as the γ of the working fluid varies. This paper examines the effect of γ on turbomachinery characteristics, mainly in terms of compressors. The performance of a centrifugal compressor stage was measured using air (γ=1.4), CO2(γ=1.29), and argon (γ=1.67). For the same values of the nondimensional speed, the pressure ratio, efficiency, and choking mass flow were found to be significantly different for the three test gases. The experimental results have been found to be consistent with a CFD analysis of the impeller. Finally, it is shown that the changes in performance can be predicted reasonably well with simple arguments based mainly on one-dimensional isentropic flow. These arguments form the basis for correction procedures that can be used to project compressor characteristics measured for one value of γ to those for a gas with a different value.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.1995767