Global transformations of nonlinear systems

Recent results have established necessary and sufficient conditions for a nonlinear system of the form \dot{x}(t) = f(x(t))-u(t)g(x(t)) . with f(0) = 0 , to be locally equivalent in a neighborhood of the origin in R n to a controllable linear system. We combine these results with several versions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1983-01, Vol.28 (1), p.24-31
Hauptverfasser: Hunt, L., Renjeng Su, Meyer, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent results have established necessary and sufficient conditions for a nonlinear system of the form \dot{x}(t) = f(x(t))-u(t)g(x(t)) . with f(0) = 0 , to be locally equivalent in a neighborhood of the origin in R n to a controllable linear system. We combine these results with several versions of the global inverse function theorem to prove sufficient conditions for the transformation of a nonlinear system to a linear system. In doing so we introduce a technique for constructing a transformation under the assumptions that {g\ldot[f\dotg],...,(ad^{n-1}f\ldotg)} span an n -dimensional space and that {g\ldot[f\ldot g],...,(ad^{n-2}f\ldotg)} is an involutive set.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.1983.1103137