Global transformations of nonlinear systems
Recent results have established necessary and sufficient conditions for a nonlinear system of the form \dot{x}(t) = f(x(t))-u(t)g(x(t)) . with f(0) = 0 , to be locally equivalent in a neighborhood of the origin in R n to a controllable linear system. We combine these results with several versions of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1983-01, Vol.28 (1), p.24-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent results have established necessary and sufficient conditions for a nonlinear system of the form \dot{x}(t) = f(x(t))-u(t)g(x(t)) . with f(0) = 0 , to be locally equivalent in a neighborhood of the origin in R n to a controllable linear system. We combine these results with several versions of the global inverse function theorem to prove sufficient conditions for the transformation of a nonlinear system to a linear system. In doing so we introduce a technique for constructing a transformation under the assumptions that {g\ldot[f\dotg],...,(ad^{n-1}f\ldotg)} span an n -dimensional space and that {g\ldot[f\ldot g],...,(ad^{n-2}f\ldotg)} is an involutive set. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1983.1103137 |