Detached-Eddy Simulation of the Separated Flow Over a Rounded-Corner Square

Detached-eddy simulation (DES) is used to study the massively separated flow over a rounded-corner square. The configuration is an idealization of the flow around a forebody cross section rotating at high angle of attack. Simulations are performed at sub- and supercritical Reynolds numbers, between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2005-09, Vol.127 (5), p.959-966
Hauptverfasser: Squires, Kyle D, Forsythe, James R, Spalart, Philippe R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detached-eddy simulation (DES) is used to study the massively separated flow over a rounded-corner square. The configuration is an idealization of the flow around a forebody cross section rotating at high angle of attack. Simulations are performed at sub- and supercritical Reynolds numbers, between which experimental measurements show a reversal of the side force. DES predictions are evaluated using experimental measurements and contrasted with unsteady Reynolds-averaged Navier–Stokes (URANS) results. The computations are also subjected to a moderate grid refinement, a doubling of the spanwise period, an enlargement of the domain in the other directions, and the removal of any explicit turbulence model. The sub- and supercritical flows are computed at Reynolds numbers of 105 and 8×105, respectively, and with the freestream at 10deg angle of attack. Boundary-layer separation characteristics (laminar or turbulent) are established via the initial and boundary conditions of the eddy viscosity. Following boundary layer detachment, a chaotic and three-dimensional wake rapidly develops. For the supercritical flow, the pressure distribution is close to the measured values and both the streamwise and side forces are in adequate agreement with measurements. For the subcritical flow, DES side-force predictions do not follow the experimental measurements far enough to achieve reversal.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.1990202