Revealing varying relationships between wastewater mercury emissions and economic growth in Chinese cities

Mercury emission from industrial wastewater has a great impact on the aquatic environment but is not well studied. Inventory analysis, decoupling and decomposition methods have been conducted based on the China Pollution Source Census dataset, which combines industry removal efficiencies to calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-01, Vol.341, p.122944-122944, Article 122944
Hauptverfasser: Zhou, Yuanchun, Ma, Shu, Zhu, Wenhui, Shi, Qingquan, Jiang, Hongqiang, Lu, Ran, Wu, Wenjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mercury emission from industrial wastewater has a great impact on the aquatic environment but is not well studied. Inventory analysis, decoupling and decomposition methods have been conducted based on the China Pollution Source Census dataset, which combines industry removal efficiencies to calculate mercury emissions from industrial wastewater in 340 cities in China during 2000-2010. The results show that over these 11 years, total mercury emissions and per capita mercury emissions increased by approximately 5 times, while the emission intensity increased by only about 3%. From 2000 to 2010, only 0.59% of cities showed strong decoupling between economic growth and mercury emissions, and 37.65% of cities showed weak decoupling, whereas 38.82% of cities showed negative decoupling. We attribute the decoupling of economic development and emissions in individual cities to several socioeconomic factors and find that a decline in emission intensity is the main driver. The Gini coefficient indicates a significant imbalance between cities' emissions, but this situation improved during 2000-2010. The objective of this article is to provide a historical perspective on the situation of mercury emissions from wastewater in China, thereby contributing' to the broader understanding of industrial pollution.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2023.122944