Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials
The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonethel...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-04, Vol.64 (7), p.2746-2759 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2759 |
---|---|
container_issue | 7 |
container_start_page | 2746 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Xie, Tong Wan, Yuwei Wang, Haoran Østrøm, Ina Wang, Shaozhou He, Mingrui Deng, Rong Wu, Xinyuan Grazian, Clara Kit, Chunyu Hoex, Bram |
description | The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials. |
doi_str_mv | 10.1021/acs.jcim.3c00746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892010404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892010404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-67ac9bf3cf8f1d5bbdb693933f138847cddd865630612dba878f62cede37ce013</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6FILAyk2HHi2CMqT6m0C0hsluPYyCWJi50Uyq_HfTEgMR3r6jvnXh8AThEcIpigKyH9cCZNPcQSwjwle6CPspTFjMDX_d07Y6QHjryfQYgxI8kh6OGc0STPcB_w6dw0xjbRU5DmLSqW0cg2C1t1bZiKKpqozq2l_bTu3UfauuhJfJnafK_4G-OlXSgnClOZdhlZHU1EY2vRKmdE5Y_BgQ6iTrY6AC93t8-jh3g8vX8cXY9jgUnaxiQXkhUaS001KrOiKAvCMMNYI0xpmsuyLCnJCIYEJWUhaE41SaQqFc6lgggPwMUmd-7sR6d8y-twmaoq0SjbeZ5QlkAEU5gG9PwPOrOdC3_1HEPM0gwhSgMFN5R01nunNJ87Uwu35AjyVfk8lM9X5fNt-cFytg3uilqVv4Zd2wG43ABr627pv3k_NgGRxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039451188</pqid></control><display><type>article</type><title>Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xie, Tong ; Wan, Yuwei ; Wang, Haoran ; Østrøm, Ina ; Wang, Shaozhou ; He, Mingrui ; Deng, Rong ; Wu, Xinyuan ; Grazian, Clara ; Kit, Chunyu ; Hoex, Bram</creator><creatorcontrib>Xie, Tong ; Wan, Yuwei ; Wang, Haoran ; Østrøm, Ina ; Wang, Shaozhou ; He, Mingrui ; Deng, Rong ; Wu, Xinyuan ; Grazian, Clara ; Kit, Chunyu ; Hoex, Bram</creatorcontrib><description>The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00746</identifier><identifier>PMID: 37982753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Artificial neural networks ; Atomic layer epitaxy ; Chemical Information ; Data mining ; Information retrieval ; Information Storage and Retrieval ; Knowledge representation ; Nanomaterials ; Natural language processing ; Neural Networks, Computer ; Sentiment Analysis ; Thermoelectric materials</subject><ispartof>Journal of chemical information and modeling, 2024-04, Vol.64 (7), p.2746-2759</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 8, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-67ac9bf3cf8f1d5bbdb693933f138847cddd865630612dba878f62cede37ce013</citedby><cites>FETCH-LOGICAL-a364t-67ac9bf3cf8f1d5bbdb693933f138847cddd865630612dba878f62cede37ce013</cites><orcidid>0000-0002-7299-3481 ; 0000-0002-1452-8020 ; 0000-0001-7159-2574 ; 0000-0002-1659-4865 ; 0000-0002-2723-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c00746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c00746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37982753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Tong</creatorcontrib><creatorcontrib>Wan, Yuwei</creatorcontrib><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Østrøm, Ina</creatorcontrib><creatorcontrib>Wang, Shaozhou</creatorcontrib><creatorcontrib>He, Mingrui</creatorcontrib><creatorcontrib>Deng, Rong</creatorcontrib><creatorcontrib>Wu, Xinyuan</creatorcontrib><creatorcontrib>Grazian, Clara</creatorcontrib><creatorcontrib>Kit, Chunyu</creatorcontrib><creatorcontrib>Hoex, Bram</creatorcontrib><title>Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Atomic layer epitaxy</subject><subject>Chemical Information</subject><subject>Data mining</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge representation</subject><subject>Nanomaterials</subject><subject>Natural language processing</subject><subject>Neural Networks, Computer</subject><subject>Sentiment Analysis</subject><subject>Thermoelectric materials</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqWwM6FILAyk2HHi2CMqT6m0C0hsluPYyCWJi50Uyq_HfTEgMR3r6jvnXh8AThEcIpigKyH9cCZNPcQSwjwle6CPspTFjMDX_d07Y6QHjryfQYgxI8kh6OGc0STPcB_w6dw0xjbRU5DmLSqW0cg2C1t1bZiKKpqozq2l_bTu3UfauuhJfJnafK_4G-OlXSgnClOZdhlZHU1EY2vRKmdE5Y_BgQ6iTrY6AC93t8-jh3g8vX8cXY9jgUnaxiQXkhUaS001KrOiKAvCMMNYI0xpmsuyLCnJCIYEJWUhaE41SaQqFc6lgggPwMUmd-7sR6d8y-twmaoq0SjbeZ5QlkAEU5gG9PwPOrOdC3_1HEPM0gwhSgMFN5R01nunNJ87Uwu35AjyVfk8lM9X5fNt-cFytg3uilqVv4Zd2wG43ABr627pv3k_NgGRxw</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Xie, Tong</creator><creator>Wan, Yuwei</creator><creator>Wang, Haoran</creator><creator>Østrøm, Ina</creator><creator>Wang, Shaozhou</creator><creator>He, Mingrui</creator><creator>Deng, Rong</creator><creator>Wu, Xinyuan</creator><creator>Grazian, Clara</creator><creator>Kit, Chunyu</creator><creator>Hoex, Bram</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7299-3481</orcidid><orcidid>https://orcid.org/0000-0002-1452-8020</orcidid><orcidid>https://orcid.org/0000-0001-7159-2574</orcidid><orcidid>https://orcid.org/0000-0002-1659-4865</orcidid><orcidid>https://orcid.org/0000-0002-2723-5286</orcidid></search><sort><creationdate>20240408</creationdate><title>Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials</title><author>Xie, Tong ; Wan, Yuwei ; Wang, Haoran ; Østrøm, Ina ; Wang, Shaozhou ; He, Mingrui ; Deng, Rong ; Wu, Xinyuan ; Grazian, Clara ; Kit, Chunyu ; Hoex, Bram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-67ac9bf3cf8f1d5bbdb693933f138847cddd865630612dba878f62cede37ce013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Atomic layer epitaxy</topic><topic>Chemical Information</topic><topic>Data mining</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge representation</topic><topic>Nanomaterials</topic><topic>Natural language processing</topic><topic>Neural Networks, Computer</topic><topic>Sentiment Analysis</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Tong</creatorcontrib><creatorcontrib>Wan, Yuwei</creatorcontrib><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Østrøm, Ina</creatorcontrib><creatorcontrib>Wang, Shaozhou</creatorcontrib><creatorcontrib>He, Mingrui</creatorcontrib><creatorcontrib>Deng, Rong</creatorcontrib><creatorcontrib>Wu, Xinyuan</creatorcontrib><creatorcontrib>Grazian, Clara</creatorcontrib><creatorcontrib>Kit, Chunyu</creatorcontrib><creatorcontrib>Hoex, Bram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Tong</au><au>Wan, Yuwei</au><au>Wang, Haoran</au><au>Østrøm, Ina</au><au>Wang, Shaozhou</au><au>He, Mingrui</au><au>Deng, Rong</au><au>Wu, Xinyuan</au><au>Grazian, Clara</au><au>Kit, Chunyu</au><au>Hoex, Bram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>64</volume><issue>7</issue><spage>2746</spage><epage>2759</epage><pages>2746-2759</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37982753</pmid><doi>10.1021/acs.jcim.3c00746</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7299-3481</orcidid><orcidid>https://orcid.org/0000-0002-1452-8020</orcidid><orcidid>https://orcid.org/0000-0001-7159-2574</orcidid><orcidid>https://orcid.org/0000-0002-1659-4865</orcidid><orcidid>https://orcid.org/0000-0002-2723-5286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-04, Vol.64 (7), p.2746-2759 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2892010404 |
source | MEDLINE; ACS Publications |
subjects | Accuracy Artificial neural networks Atomic layer epitaxy Chemical Information Data mining Information retrieval Information Storage and Retrieval Knowledge representation Nanomaterials Natural language processing Neural Networks, Computer Sentiment Analysis Thermoelectric materials |
title | Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opinion%20Mining%20by%20Convolutional%20Neural%20Networks%20for%20Maximizing%20Discoverability%20of%20Nanomaterials&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Xie,%20Tong&rft.date=2024-04-08&rft.volume=64&rft.issue=7&rft.spage=2746&rft.epage=2759&rft.pages=2746-2759&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00746&rft_dat=%3Cproquest_cross%3E2892010404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039451188&rft_id=info:pmid/37982753&rfr_iscdi=true |