Opinion Mining by Convolutional Neural Networks for Maximizing Discoverability of Nanomaterials
The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonethel...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-04, Vol.64 (7), p.2746-2759 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials. |
---|---|
ISSN: | 1549-9596 1549-960X 1549-960X |
DOI: | 10.1021/acs.jcim.3c00746 |