Dynamics of the low-level jet off the west coast of subtropical South America

The subtropical west coast of South America is under the influence of the southeast Pacific anticyclone year-round, which induces persistent southerly winds along the coast of north-central Chile. These winds often take the form of a low-level coastal jet, in many aspects similar to the coastal jet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2005-12, Vol.133 (12), p.3661-3677
Hauptverfasser: MUNOZ, Ricardo C, GARREAUD, René D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The subtropical west coast of South America is under the influence of the southeast Pacific anticyclone year-round, which induces persistent southerly winds along the coast of north-central Chile. These winds often take the form of a low-level coastal jet, in many aspects similar to the coastal jet existing off the California coast. Extensive diagnostics of mesoscale model results for a case in October 2000 are used here to describe the mean momentum budget supporting the coastal jet. The jet appears to occur when midlatitude synoptic conditions induce a northerly directed pressure gradient force along the coast of north-central Chile. The very steep coastal terrain precludes the development of a significant easterly low-level wind that would geostrophically balance the pressure gradient. Instead, the meridional flow accelerates until turbulent friction in the marine boundary layer balances the meridional pressure gradient. The resulting force balance is semigeostrophic, with geostrophy valid only in the zonal (cross shore) direction. At higher levels, the topographic inhibition of the easterlies relaxes, and a small easterly flow ensues, which turns out to be very important in the temperature and stability budgets of the layer capping the marine boundary layer.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR3074.1