Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins

Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-11, Vol.127 (47), p.10118-10128
Hauptverfasser: Tamaki, Hajime, Matsuki, Yoh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10128
container_issue 47
container_start_page 10118
container_title The journal of physical chemistry. B
container_volume 127
creator Tamaki, Hajime
Matsuki, Yoh
description Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of paramount importance in identifying the type of amino acid residues. Conventionally, however, recording the Cβ chemical shift of solid proteins with relatively short transverse relaxation time is often limited by the long delay required for the magnetization transfer to Cβ spins and its evolution, that is, by the sensitivity drop. In this article, we propose a new method that encodes the Cβ chemical shifts onto the intensities of the scalar-coupled Cα signals by combining an optimal control-based spin manipulation pulse and a spin-state filter. This reduces the total required transverse evolution to less than half of that for the previously proposed method, opening up the concept of the Cβ-encoding nearest-neighbor NMR, for the first time, to solid proteins. Also, the total measurement time was shorter than that required for the explicit Cβ shift evolution. We demonstrate the sequential signal assignment for microcrystalline protein GB1, and then discuss the prospects for more challenging proteins.
doi_str_mv 10.1021/acs.jpcb.3c05914
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891755168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891755168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-6a515e6187097bc87f812521abb624f2b20f52b576e98d7a3feb5e01ebbef3523</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZ4W8ZJNiO_UjyxKVh1SpSIW1ZTt26yqJS5wu-C0-hG_CVQOL0Yxm7r0aHQBuMZpiRPCDMnG62xs9zQ2iBZ6dgTGmBGWp-PkwM4zYCFzFuEOIUCLYJRjlvOBU5HQMzGrf-0bVWRnavgt19qiirWD58w3LrW28UTVcb73r4aI1ofLtBrrQwYVz3njb9nDtN23SzGNMQ3PcBAfXofYVfOtCb30br8GFU3W0N0OfgI-nxXv5ki1Xz6_lfJmZ9FefMUUxtQwLjgqujeBO4HTASmtGZo5oghwlmnJmC1FxlTurqUXYam1dTkk-Afen3H0XPg829rLx0di6Vq0NhyiJKDCnFDORpOgkNV2IsbNO7ruEofuSGMkjWpnQyiNaOaBNlrsh_aAbW_0b_ljmv1nXd0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891755168</pqid></control><display><type>article</type><title>Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tamaki, Hajime ; Matsuki, Yoh</creator><creatorcontrib>Tamaki, Hajime ; Matsuki, Yoh</creatorcontrib><description>Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of paramount importance in identifying the type of amino acid residues. Conventionally, however, recording the Cβ chemical shift of solid proteins with relatively short transverse relaxation time is often limited by the long delay required for the magnetization transfer to Cβ spins and its evolution, that is, by the sensitivity drop. In this article, we propose a new method that encodes the Cβ chemical shifts onto the intensities of the scalar-coupled Cα signals by combining an optimal control-based spin manipulation pulse and a spin-state filter. This reduces the total required transverse evolution to less than half of that for the previously proposed method, opening up the concept of the Cβ-encoding nearest-neighbor NMR, for the first time, to solid proteins. Also, the total measurement time was shorter than that required for the explicit Cβ shift evolution. We demonstrate the sequential signal assignment for microcrystalline protein GB1, and then discuss the prospects for more challenging proteins.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.3c05914</identifier><identifier>PMID: 37975835</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acids - chemistry ; Magnetic Resonance Spectroscopy - methods ; Nuclear Magnetic Resonance, Biomolecular - methods ; Proteins - chemistry</subject><ispartof>The journal of physical chemistry. B, 2023-11, Vol.127 (47), p.10118-10128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-6a515e6187097bc87f812521abb624f2b20f52b576e98d7a3feb5e01ebbef3523</cites><orcidid>0000-0001-5339-6123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37975835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamaki, Hajime</creatorcontrib><creatorcontrib>Matsuki, Yoh</creatorcontrib><title>Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins</title><title>The journal of physical chemistry. B</title><addtitle>J Phys Chem B</addtitle><description>Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of paramount importance in identifying the type of amino acid residues. Conventionally, however, recording the Cβ chemical shift of solid proteins with relatively short transverse relaxation time is often limited by the long delay required for the magnetization transfer to Cβ spins and its evolution, that is, by the sensitivity drop. In this article, we propose a new method that encodes the Cβ chemical shifts onto the intensities of the scalar-coupled Cα signals by combining an optimal control-based spin manipulation pulse and a spin-state filter. This reduces the total required transverse evolution to less than half of that for the previously proposed method, opening up the concept of the Cβ-encoding nearest-neighbor NMR, for the first time, to solid proteins. Also, the total measurement time was shorter than that required for the explicit Cβ shift evolution. We demonstrate the sequential signal assignment for microcrystalline protein GB1, and then discuss the prospects for more challenging proteins.</description><subject>Amino Acids - chemistry</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Proteins - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqWwZ4W8ZJNiO_UjyxKVh1SpSIW1ZTt26yqJS5wu-C0-hG_CVQOL0Yxm7r0aHQBuMZpiRPCDMnG62xs9zQ2iBZ6dgTGmBGWp-PkwM4zYCFzFuEOIUCLYJRjlvOBU5HQMzGrf-0bVWRnavgt19qiirWD58w3LrW28UTVcb73r4aI1ofLtBrrQwYVz3njb9nDtN23SzGNMQ3PcBAfXofYVfOtCb30br8GFU3W0N0OfgI-nxXv5ki1Xz6_lfJmZ9FefMUUxtQwLjgqujeBO4HTASmtGZo5oghwlmnJmC1FxlTurqUXYam1dTkk-Afen3H0XPg829rLx0di6Vq0NhyiJKDCnFDORpOgkNV2IsbNO7ruEofuSGMkjWpnQyiNaOaBNlrsh_aAbW_0b_ljmv1nXd0M</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Tamaki, Hajime</creator><creator>Matsuki, Yoh</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5339-6123</orcidid></search><sort><creationdate>20231130</creationdate><title>Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins</title><author>Tamaki, Hajime ; Matsuki, Yoh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-6a515e6187097bc87f812521abb624f2b20f52b576e98d7a3feb5e01ebbef3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acids - chemistry</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Hajime</creatorcontrib><creatorcontrib>Matsuki, Yoh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Hajime</au><au>Matsuki, Yoh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J Phys Chem B</addtitle><date>2023-11-30</date><risdate>2023</risdate><volume>127</volume><issue>47</issue><spage>10118</spage><epage>10128</epage><pages>10118-10128</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of paramount importance in identifying the type of amino acid residues. Conventionally, however, recording the Cβ chemical shift of solid proteins with relatively short transverse relaxation time is often limited by the long delay required for the magnetization transfer to Cβ spins and its evolution, that is, by the sensitivity drop. In this article, we propose a new method that encodes the Cβ chemical shifts onto the intensities of the scalar-coupled Cα signals by combining an optimal control-based spin manipulation pulse and a spin-state filter. This reduces the total required transverse evolution to less than half of that for the previously proposed method, opening up the concept of the Cβ-encoding nearest-neighbor NMR, for the first time, to solid proteins. Also, the total measurement time was shorter than that required for the explicit Cβ shift evolution. We demonstrate the sequential signal assignment for microcrystalline protein GB1, and then discuss the prospects for more challenging proteins.</abstract><cop>United States</cop><pmid>37975835</pmid><doi>10.1021/acs.jpcb.3c05914</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5339-6123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2023-11, Vol.127 (47), p.10118-10128
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2891755168
source MEDLINE; American Chemical Society Journals
subjects Amino Acids - chemistry
Magnetic Resonance Spectroscopy - methods
Nuclear Magnetic Resonance, Biomolecular - methods
Proteins - chemistry
title Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal-Control-Based%20C%CE%B2%20Chemical%20Shift%20Encoding%20for%20Efficient%20Signal%20Assignment%20of%20Solid%20Proteins&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Tamaki,%20Hajime&rft.date=2023-11-30&rft.volume=127&rft.issue=47&rft.spage=10118&rft.epage=10128&rft.pages=10118-10128&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.3c05914&rft_dat=%3Cproquest_cross%3E2891755168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891755168&rft_id=info:pmid/37975835&rfr_iscdi=true