Optimal-Control-Based Cβ Chemical Shift Encoding for Efficient Signal Assignment of Solid Proteins

Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-11, Vol.127 (47), p.10118-10128
Hauptverfasser: Tamaki, Hajime, Matsuki, Yoh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast magic-angle spinning (MAS) solid-state NMR spectroscopy is a powerful tool for gaining structural and dynamic information on solid proteins. To access such information site-specifically, the signal assignment process is unavoidable. In the assignment process, Cα and Cβ chemical shifts are of paramount importance in identifying the type of amino acid residues. Conventionally, however, recording the Cβ chemical shift of solid proteins with relatively short transverse relaxation time is often limited by the long delay required for the magnetization transfer to Cβ spins and its evolution, that is, by the sensitivity drop. In this article, we propose a new method that encodes the Cβ chemical shifts onto the intensities of the scalar-coupled Cα signals by combining an optimal control-based spin manipulation pulse and a spin-state filter. This reduces the total required transverse evolution to less than half of that for the previously proposed method, opening up the concept of the Cβ-encoding nearest-neighbor NMR, for the first time, to solid proteins. Also, the total measurement time was shorter than that required for the explicit Cβ shift evolution. We demonstrate the sequential signal assignment for microcrystalline protein GB1, and then discuss the prospects for more challenging proteins.
ISSN:1520-6106
1520-5207
1520-5207
DOI:10.1021/acs.jpcb.3c05914