l -Glutamate Seed Priming Enhances 2-Acetyl-1-pyrroline Formation in Fragrant Rice Seedlings in Response to Arsenite Stress
2-Acetyl-1-pyrroline (2-AP) is a fragrance compound and flavor in fragrant rice whose precursors are generally glutamate (Glu) and proline (Pro). Our previous study revealed that exogenous Glu enhanced the arsenic (As) tolerance in fragrant rice by improving the ascorbic acid-glutathione cycle and t...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2023-11, Vol.71 (47), p.18443-18453 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2-Acetyl-1-pyrroline (2-AP) is a fragrance compound and flavor in fragrant rice whose precursors are generally glutamate (Glu) and proline (Pro). Our previous study revealed that exogenous Glu enhanced the arsenic (As) tolerance in fragrant rice by improving the ascorbic acid-glutathione cycle and the Pro content in roots. However, less is known about how Glu is involved in 2-AP biosynthesis in fragrant rice under As stress. Herein, a hydroponic experiment of L-Glu seed priming with 0, 100, and 500 μM l-glutamic acid solutions was conducted with two fragrant rice varieties. After that, the 10-day-old seedlings were cultured under 0 and 100 μM arsenite stress for 10 d. Results showed that the 2-AP and Pro contents were increased by 18-30% and 21-78% under As100 μM-Glu100 μM treatment in comparison to the control As100 μM to Glu0 μM, while the activities of pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) were increased by 19-46% and 3-19%, respectively. Furthermore, the 2-AP, Pro contents, and P5CS activity were correlated positively. Correspondingly, a significant abundance of differential expressed metabolites (18) and differential expressed genes (26) was observed in amino acid metabolism and glutathione metabolism pathways. In addition, several essential genes were verified and grouped into the pathways of glutathione metabolism, proline, and arginine metabolism with antioxidant defense system to comodulate 2-AP biosynthesis and stress detoxification. Therefore, the Glu seed priming treatment had a positive impact on the 2-AP biosynthesis of fragrant rice under 100 μM arsenite toxicity. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c06369 |