Combined quantitative lipidomics and back-propagation neural network approach to discriminate the breed and part source of lamb
The study successfully utilized an analytical approach that combined quantitative lipidomics with back-propagation neural networks to identify breed and part source of lamb using small-scale samples. 1230 molecules across 29 lipid classes were identified in longissimus dorsi and knuckle meat of both...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-03, Vol.437, p.137940-137940, Article 137940 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study successfully utilized an analytical approach that combined quantitative lipidomics with back-propagation neural networks to identify breed and part source of lamb using small-scale samples. 1230 molecules across 29 lipid classes were identified in longissimus dorsi and knuckle meat of both Tan sheep and Bahan crossbreed sheep. Applying multivariate statistical methods, 12 and 7 lipid molecules were identified as potential markers for breed and part identification, respectively. Stepwise linear discriminant analysis was applied to select 3 and 4 lipid molecules, respectively, for discriminating lamb breed and part sources, achieving correct rates of discrimination of 100 % and 95 %. Additionally, back-propagation neural network proved to be a superior method for identifying sources of lamb meat compared to other machine learning approaches. These findings indicate that integrating lipidomics with back-propagation neural network approach can provide an effective strategy to trace and certify lamb products, ensuring their quality and protecting consumer rights. |
---|---|
ISSN: | 0308-8146 1873-7072 |
DOI: | 10.1016/j.foodchem.2023.137940 |