A new fluorescent probe for the visualization of progerin
Hutchinson-Gilford progeria syndrome (HGPS) or progeria is a rare genetic disease that causes premature aging, leading to a drastic reduction in the life expectancy of patients. Progeria is mainly caused by the intracellular accumulation of a defective protein called progerin, generated from a mutat...
Gespeichert in:
Veröffentlicht in: | Bioorganic chemistry 2024-01, Vol.142, p.106967, Article 106967 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hutchinson-Gilford progeria syndrome (HGPS) or progeria is a rare genetic disease that causes premature aging, leading to a drastic reduction in the life expectancy of patients. Progeria is mainly caused by the intracellular accumulation of a defective protein called progerin, generated from a mutation in the LMNA gene. Currently, there is only one approved drug for the treatment of progeria, which has limited efficacy. It is believed that progerin levels are the most important biomarker related to the severity of the disease. However, there is a lack of effective tools to directly visualize progerin in the native cellular models, since the commercially available antibodies are not well suited for the direct visualization of progerin in cells from the mouse model of the disease. In this context, an alternative option for the visualization of a protein relies on the use of fluorescent chemical probes, molecules with affinity and specificity towards a protein. In this work we report the synthesis and characterization of a new fluorescent probe (UCM-23079) that allows for the direct visualization of progerin in cells from the most widely used progeroid mouse model. Thus, UCM-23079 is a new tool compound that could help prioritize potential preclinical therapies towards the final goal of finding a definitive cure for progeria. |
---|---|
ISSN: | 0045-2068 1090-2120 1090-2120 |
DOI: | 10.1016/j.bioorg.2023.106967 |