Identifying loops using DJ graphs
Loop identification is a necessary step in loop transformations for high-performance architectures. One classical technique for detecting loops is Tarjan's interval-finding algorithm. The intervals identified by Tarjan's method are single-entry, strongly connected subgraphs that closely re...
Gespeichert in:
Veröffentlicht in: | ACM transactions on programming languages and systems 1996-11, Vol.18 (6), p.649-658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Loop identification is a necessary step in loop transformations for high-performance architectures. One classical technique for detecting loops is Tarjan's interval-finding algorithm. The intervals identified by Tarjan's method are single-entry, strongly connected subgraphs that closely reflect a program's loop structure. We present a simple algorithm for identifying both reducible and irreducible loops using DJ graphs. Our method is a generalization of Tarjan's method, as it identifies nested intervals (or loops) even in the presence of irreducibility. |
---|---|
ISSN: | 0164-0925 1558-4593 |
DOI: | 10.1145/236114.236115 |