Acetazolamide loaded-silver nanoparticles: A potential treatment for murine trichinellosis

Trichinellosis is a global food-borne disease caused by viviparous parasitic nematodes of the genus Trichinella. Due to the lack of effective, safe therapy and the documented adverse effects of traditional therapy, this study aimed to evaluate the therapeutic effect of acetazolamide-loaded silver na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of helminthology 2023-11, Vol.97, p.e86-e86, Article e86
Hauptverfasser: Abdel Hamed, E.F., Taha, A.A., Abdel Ghany, S.M., Saleh, A.A., Fawzy, E.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trichinellosis is a global food-borne disease caused by viviparous parasitic nematodes of the genus Trichinella. Due to the lack of effective, safe therapy and the documented adverse effects of traditional therapy, this study aimed to evaluate the therapeutic effect of acetazolamide-loaded silver nanoparticles (AgNPs) on murine trichinellosis. Fifty male Swiss albino mice were divided into five groups of ten mice each: Group I, normal control group; Group II, infected with T. spiralis and not treated; Group III, infected and given AgNPs; Group IV, infected and treated with acetazolamide; and Group V, infected and treated with acetazolamide-loaded AgNPs. Mice were infected orally with 250 larvae. The efficacy was assessed by counting T. spiralis adults and larvae, measuring serum total antioxidant capacity, and observing the histopathological and ultrastructural alterations. Acetazolamide-loaded AgNPs treatment exhibited the highest percentage of reduction (84.72% and 80.74%) for the intestinal adults and the muscular larvae of T. spiralis-infected animals, respectively. Furthermore, during the intestinal and muscular phases, the serum of the same group had the best free-radical scavenging capacity (antioxidant capacity), which reduced tissue damage induced by oxidative stress. Histopathologically, the normal intestinal and muscular architecture was restored in the group treated with acetazolamide-loaded AgNPs, in addition to the reduced inflammatory infiltrate that alleviated inflammation compared to infected animals. Our results confirmed the marked destruction of the ultrastructural features of T. spiralis adults and larvae. Acetazolamide-loaded AgNPs are a promising therapy against T. spiralis infection.
ISSN:0022-149X
1475-2697
DOI:10.1017/S0022149X23000731