Climate‐resilient crops: Lessons from xerophytes

SUMMARY Developing climate‐resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2024-03, Vol.117 (6), p.1815-1835
Hauptverfasser: Chen, Xi, Zhao, Chenchen, Yun, Ping, Yu, Min, Zhou, Meixue, Chen, Zhong‐Hua, Shabala, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY Developing climate‐resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought‐tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt‐tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt‐tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+/H+ tonoplast exchangers (NHXs) and vacuolar H+‐ pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance‐like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non‐fermenting 1 (SNF1)‐related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought‐tolerant and salt‐resistant crops, securing agricultural yields in an era of climate unpredictability. Significance Statement This work compare some of the key traits that differentiate between xerophytes (naturally drought‐tolerant plants) and mesophytes (to which majority of the crops belong). Incorporating these genetic insights into breeding practices could pave the way for more drought‐tolerant and salt‐resistant crops, securing agricultural yields in an era of climate unpredictability.
ISSN:0960-7412
1365-313X
DOI:10.1111/tpj.16549