Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions

Fast coronal mass ejections (CMEs), X‐class flares, solar energetic particle (SEP) events, and interplanetary shocks were abundantly observed during the episode of intense solar activity in late October and early November 2003. Most of the 80 CMEs originated from three active regions (NOAA ARs 484,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. A. Space Physics 2005-09, Vol.110 (A9), p.n/a
Hauptverfasser: Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M. L., Howard, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast coronal mass ejections (CMEs), X‐class flares, solar energetic particle (SEP) events, and interplanetary shocks were abundantly observed during the episode of intense solar activity in late October and early November 2003. Most of the 80 CMEs originated from three active regions (NOAA ARs 484, 486, and 488). We compare the statistical properties of these CMEs with those of the general population of CMEs observed during cycle 23. We find that (1) the 2003 October–November CMEs were fast and wide on the average and hence were very energetic, (2) nearly 20 percent of the ultrafast CMEs (speed ≥2000 km s−1) of cycle 23 occurred during the October–November interval, including the fastest CME of the study period (∼2700 km s−1 on 4 November 2003 at 1954 UT), (3) the rate of full‐halo CMEs was nearly four times the average rate during cycle 23, (4) at least sixteen shocks were observed near the Sun, while eight of them were intercepted by spacecraft along the Sun‐Earth line, (5) the CMEs were highly geoeffective: the resulting geomagnetic storms were among the most intense of cycle 23, (6) the CMEs were associated with very large SEP events, including the largest event of cycle 23. These extreme properties were commensurate with the size and energy of the associated active regions. This study suggests that the speed of CMEs may not be much higher than ∼3000 km s−1, consistent with the free energy available in active regions. An important practical implication of such a speed limit is that the Sun‐Earth travel times of CME‐driven shocks may not be less than ∼0.5 day. Two of the shocks arrived at Earth in
ISSN:0148-0227
2169-9380
2156-2202
2169-9402
DOI:10.1029/2004JA010958