The Microstructures and Deformation Mechanism of Hetero-Structured Pure Ti under High Strain Rates

This study investigates the microstructures and deformation mechanism of hetero-structured pure Ti under different high strain rates (500 s−1, 1000 s−1, 2000 s−1). It has been observed that, in samples subjected to deformation, the changes in texture are minimal and the rise in temperature is relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (21), p.7059
Hauptverfasser: Wang, Shuaizhuo, Yan, Haotian, Zhang, Dongmei, Hu, Jiajun, Li, Yusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the microstructures and deformation mechanism of hetero-structured pure Ti under different high strain rates (500 s−1, 1000 s−1, 2000 s−1). It has been observed that, in samples subjected to deformation, the changes in texture are minimal and the rise in temperature is relatively low. Therefore, the influence of these two factors on the deformation mechanism can be disregarded. As the strain rate increases, the dominance of dislocation slip decreases while deformation twinning becomes more prominent. Notably, at a strain rate of 2000 s−1, nanoscale twin lamellae are activated within the grain with a size of 500 nm, which is a rarely observed phenomenon in pure Ti. Additionally, martensitic phase transformation has also been identified. In order to establish a correlation between the stress required for twinning and the grain size, a modified Hall–Petch model is proposed, with the obtained value of Ktwin serving as an effective metric for this relationship. These findings greatly enhance our understanding of the mechanical responses of Ti and broaden the potential applications of Ti in dynamic deformation scenarios.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16217059