Nano-Needle Boron-Doped Diamond Film with High Electrochemical Performance of Detecting Lead Ions

Nano-needle boron-doped diamond (NNBDD) films increase their performance when used as electrodes in the determination of Pb2+. We develop a simple and economical route to produce NNBDD based on the investigation of the diamond growth mode and the ratio of diamond to non-diamond carbon without involv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-11, Vol.16 (21), p.6986
Hauptverfasser: Yuan, Xiaoxi, Yang, Mingchao, Wang, Xu, Zhu, Yongfu, Yang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nano-needle boron-doped diamond (NNBDD) films increase their performance when used as electrodes in the determination of Pb2+. We develop a simple and economical route to produce NNBDD based on the investigation of the diamond growth mode and the ratio of diamond to non-diamond carbon without involving any templates. An enhancement in surface area is achievable for NNBDD film. The NNBDD electrodes are characterized through scanning electron microscopy, Raman spectroscopy, X-ray diffraction, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse anodic stripping voltammetry (DPASV). Furthermore, we use a finite-element numerical method to research the prospects of tip-enhanced electric fields for sensitive detection at low Pb2+ concentrations. The NNBDD exhibits significant advantages and great electrical conductivity and is applied to detect trace Pb2+ through DPASV. Under pre-deposition accumulation conditions, a wide linear range from 1 to 80 µgL−1 is achieved. A superior detection limit of 0.32 µgL−1 is achieved for Pb2+, which indicates great potential for the sensitive detection of heavy metal ions.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16216986