Construction of Coarse-Grained Molecular Dynamics with Many-Body Non-Markovian Memory

We introduce a machine-learning-based coarse-grained molecular dynamics model that faithfully retains the many-body nature of the intermolecular dissipative interactions. Unlike the common empirical coarse-grained models, the present model is constructed based on the Mori-Zwanzig formalism and natur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-10, Vol.131 (17), p.177301-177301, Article 177301
Hauptverfasser: Lyu, Liyao, Lei, Huan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a machine-learning-based coarse-grained molecular dynamics model that faithfully retains the many-body nature of the intermolecular dissipative interactions. Unlike the common empirical coarse-grained models, the present model is constructed based on the Mori-Zwanzig formalism and naturally inherits the heterogeneous state-dependent memory term rather than matching the mean-field metrics such as the velocity autocorrelation function. Numerical results show that preserving the many-body nature of the memory term is crucial for predicting the collective transport and diffusion processes, where empirical forms generally show limitations.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.131.177301