Synthesis without solvent: consequences for mechanochemical reactivity

Solvents are so nearly omnipresent in synthetic chemistry that a classic question for their use has been: "What is the best solvent for this reaction?" The increasing use of mechanochemical approaches to synthesis-by grinding, milling, extrusion, or other means-and usually with no, or only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2023-11, Vol.59 (96), p.1421-14222
Hauptverfasser: Wenger, Lauren E, Hanusa, Timothy P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solvents are so nearly omnipresent in synthetic chemistry that a classic question for their use has been: "What is the best solvent for this reaction?" The increasing use of mechanochemical approaches to synthesis-by grinding, milling, extrusion, or other means-and usually with no, or only limited, amounts of solvent, has raised an alternative question for the synthetic chemist: "What happens if there is no solvent?" This review focuses on a three-part answer to that question: when there is little change ("solvent-optional" reactions); when solvent needs to be present in some form, even if only in the amounts provided by liquid-assisted (LAG) or solvate-assisted grinding; and those cases in which mechanochemistry allows access to compounds that cannot be obtained from solution-based routes. The emphasis here is on inorganic and organometallic systems, including selected examples of mechanosynthesis and mechanocatalysis. Issues of mechanochemical depictions and the adequacy of LAG descriptions are also reviewed. Solution-based reactions are a staple of synthetic chemistry-but what happens mechanochemically, when there is no solvent?
ISSN:1359-7345
1364-548X
DOI:10.1039/d3cc04929a