Compressibility effects and turbulence scalings in supersonic channel flow
Turbulence in supersonic channel flow is studied using direct numerical simulation. The ability of outer and inner scalings to collapse profiles of turbulent stresses onto their incompressible counterparts is investigated. Such collapse is adequate with outer scaling when sufficiently far from the w...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2004-06, Vol.509, p.207-216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turbulence in supersonic channel flow is studied using direct numerical simulation. The ability of outer and inner scalings to collapse profiles of turbulent stresses onto their incompressible counterparts is investigated. Such collapse is adequate with outer scaling when sufficiently far from the wall, but not with inner scaling. Compressibility effects on the turbulent stresses, their anisotropy, and their balance equations are identified. A reduction in the near-wall pressure-strain, found responsible for the changed Reynolds-stress profiles, is explained using a Green's-function-based analysis of the pressure field. |
---|---|
ISSN: | 0022-1120 |
DOI: | 10.1017/S002211200400937 |