A fuzzy relational clustering algorithm based on a dissimilarity measure extracted from data

One of the critical aspects of clustering algorithms is the correct identification of the dissimilarity measure used to drive the partitioning of the data set. The dissimilarity measure induces the cluster shape and therefore determines the success of clustering algorithms. As cluster shapes change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2004-02, Vol.34 (1), p.775-781
Hauptverfasser: Corsini, P., Lazzerini, B., Marcelloni, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the critical aspects of clustering algorithms is the correct identification of the dissimilarity measure used to drive the partitioning of the data set. The dissimilarity measure induces the cluster shape and therefore determines the success of clustering algorithms. As cluster shapes change from a data set to another, dissimilarity measures should be extracted from data. To this aim, we exploit some pairs of points with known dissimilarity value to teach a dissimilarity relation to a feed-forward neural network. Then, we use the neural dissimilarity measure to guide an unsupervised relational clustering algorithm. Experiments on synthetic data sets and on the Iris data set show that the relational clustering algorithm based on the neural dissimilarity outperforms some popular clustering algorithms (with possible partial supervision) based on spatial dissimilarity.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2003.817041