Intelligent phenotype-detection and gene expression profile generation with generative adversarial networks

Gene expression analysis is valuable for cancer type classification and identifying diverse cancer phenotypes. The latest high-throughput RNA sequencing devices have enabled access to large volumes of gene expression data. However, we face several challenges, such as data security and privacy, when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2024-01, Vol.577, p.111636-111636, Article 111636
Hauptverfasser: Ravaee, Hamid, Manshaei, Mohammad Hossein, Safayani, Mehran, Sartakhti, Javad Salimi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene expression analysis is valuable for cancer type classification and identifying diverse cancer phenotypes. The latest high-throughput RNA sequencing devices have enabled access to large volumes of gene expression data. However, we face several challenges, such as data security and privacy, when we develop machine learning-based classifiers for categorizing cancer types with these datasets. To address these issues, we propose IP3G (Intelligent Phenotype-detection and Gene expression profile Generation with Generative adversarial network), a model based on Generative Adversarial Networks. IP3G tackles two major problems: augmenting gene expression data and unsupervised phenotype discovery. By converting gene expression profiles into 2-Dimensional images and leveraging IP3G, we generate new profiles for specific phenotypes. IP3G learns disentangled representations of gene expression patterns and identifies phenotypes without labeled data. We improve the objective function of the GAN used in IP3G by employing the earth mover distance and a novel mutual information function. IP3G outperforms clustering methods like k-Means, DBSCAN, and GMM in unsupervised phenotype discovery, while also surpassing SVM and CNN classification accuracy by up to 6% through gene expression profile augmentation. The source code for the developed IP3G is accessible to the public on GitHub.
ISSN:0022-5193
1095-8541
DOI:10.1016/j.jtbi.2023.111636