A review on brain age prediction models
Brain age in neuroimaging has emerged over the last decade and reflects the estimated age based on the brain MRI scan from a person. As a person ages, their brain structure will change, and these changes will be exclusive to males and females and will differ for each. White matter and grey matter de...
Gespeichert in:
Veröffentlicht in: | Brain research 2024-01, Vol.1823, p.148668-148668, Article 148668 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain age in neuroimaging has emerged over the last decade and reflects the estimated age based on the brain MRI scan from a person. As a person ages, their brain structure will change, and these changes will be exclusive to males and females and will differ for each. White matter and grey matter density have a deeper relationship with brain aging. Hence, if the white matter and grey matter concentrations vary, the rate at which the brain ages will also vary. Neurodegenerative illnesses can be detected using the biomarker known as brain age. The development of deep learning has made it possible to analyze structural neuroimaging data in new ways, notably by predicting brain ages. We introduce the techniques and possible therapeutic uses of brain age prediction in this cutting-edge review. Creating a machine learning regression model to analyze age-related changes in brain structure among healthy individuals is a typical procedure in studies focused on brain aging. Subsequently, this model is employed to forecast the aging of brains in new individuals. The concept of the "brain-age gap" refers to the difference between an individual's predicted brain age and their actual chronological age. This score may serve as a gauge of the general state of the brain's health while also reflecting neuroanatomical disorders. It may help differential diagnosis, prognosis, and therapy decisions as well as early identification of brain-based illnesses. The following is a summary of the many forecasting techniques utilized over the past 11 years to estimate brain age. The study's conundrums and potential outcomes of the brain age predicted by current models will both be covered. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2023.148668 |