Ultrathin Rh Nanosheets with Rich Grain Boundaries for Efficient Hydrogen Oxidation Electrocatalysis

Two-dimensional (2D) Pt-group ultrathin nanosheets (NSs) are promising advanced electrocatalysts for energy-related catalytic reactions. However, improving the electrocatalytic activity of 2D Pt-group NSs through the addition of abundant grain boundaries (GBs) and understanding the underlying format...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-12, Vol.145 (49), p.27010-27021
Hauptverfasser: Yang, Xiaodong, Ouyang, Bo, Zhao, Lei, Shen, Qi, Chen, Guozhu, Sun, Yiqiang, Li, Cuncheng, Xu, Kun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) Pt-group ultrathin nanosheets (NSs) are promising advanced electrocatalysts for energy-related catalytic reactions. However, improving the electrocatalytic activity of 2D Pt-group NSs through the addition of abundant grain boundaries (GBs) and understanding the underlying formation mechanism remain significant challenges. Herein, we report the controllable synthesis of a series of Rh-based nanocrystals (e.g., Rh nanoparticles, Rh NSs, and Rh NSs with GBs) through a CO-mediated kinetic control synthesis route. In light of the 2D NSs’ structural advantages and GB modification, the Rh NSs with rich GBs exhibit an enhanced electrocatalytic activity compared to pure Rh NSs and commercial Pt/C toward the hydrogen oxidation reaction (HOR) in alkaline media. Both experimental results and theoretical computations corroborate that the GBs in the Rh NSs have the capacity to ameliorate the adsorption free energy of reaction intermediates during the HOR, thus resulting in outstanding HOR catalytic performance. Our work offers novel perspectives in the realm of developing sophisticated 2D Pt-group metal electrocatalysts with rich GBs for the energy conversion field.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c10465