A Bayesian method for probable surface reconstruction and decimation

We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2006-01, Vol.25 (1), p.39-59
Hauptverfasser: Diebel, James R., Thrun, Sebastian, Brünig, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.
ISSN:0730-0301
1557-7368
DOI:10.1145/1122501.1122504