Crystalline Micro-Sized Carbonated Apatites: Chemical Anisotropy of the Crystallite Surfaces, Biocompatibility, Osteoconductivity, and Osteoinductive Effect Enhanced by Poly(ethylene phosphoric acid)

Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2023-11, Vol.6 (11), p.5067-5077
Hauptverfasser: Nifant’ev, Ilya E., Tavtorkin, Alexander N., Ryndyk, Maria P., Gavrilov, Dmitry E., Lukina, Yulia S., Bionyshev-Abramov, Leonid L., Serejnikova, Natalya B., Smolentsev, Dmitriiy V., Ivchenko, Pavel V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synthetic CAp. In the present work, microsized highly crystalline carbonated apatites with uniform hexagonal (hCAp) or platelike (pCAp) morphology have been studied for the first time in vitro and in vivo, comparing against commercial hydroxyapatite (HAp) and β-tricalcuim phosphate (βTCP). In vitro experiments on dissolution of those calcium phosphate ceramics (CPCs) in acetate (pH 5.5) and Tris (pH 7.3) buffer solutions showed the following rank order of the dissolution rates: βTCP > hCAp > pCAp > HAp. The higher dissolution rate of hCAp in comparison with pCAp is explained by chemical anisotropy of the crystallite surfaces, which was proven by SEM studies of the changes in the morphology of hCAp and pCAp crystallites during hydrolysis. A 5-week experiment on subcutaneous implantation of CPC species showed the following rank order of bioresorption rates: βTCP > pCAp > hCAp > HAp. pCAp matrixes exhibited the highest biocompatibility, confirmed by histomorphological analysis. Three-month bone regeneration experiments involving a rat tibial defect model were conducted with 250–500 μm granules of pCAp and pCAp-PEPA [pCAp, pretreated with 2 wt % poly­(ethylene phosphoric acid)]. Notably, pCAp-PEPA implants were resorbed at higher rates and induced the formation of more mature osseous tissue, a compact bone with Haversian systems.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.3c00753