The one-week and three-month reliability of acceleration outcomes from an insole-embedded inertial measurement unit during treadmill running
Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (...
Gespeichert in:
Veröffentlicht in: | Sports biomechanics 2023-11, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (long-term) reliability of peak resultant, vertical, and anteroposterior accelerations derived from insole-embedded IMUs. The secondary aim was to assess the reliability of peak acceleration variability and left-right limb symmetry in all directions over the short and long term. A sample of healthy adult rearfoot runners (n = 23; age 41.7 ± 11.2 years) ran at a variety of speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) on a treadmill in standardised footwear with insole-embedded IMUs in each shoe. Peak accelerations exhibited good to excellent short-term reliability and moderate to excellent long-term reliability in all directions. Peak acceleration variability showed poor to good short- and long-term reliability, whereas the symmetry of peak accelerations demonstrated moderate to excellent and moderate to good short- and long-term reliability, respectively. Our results demonstrate how insole-embedded IMUs represent a viable option for clinicians to measure peak accelerations within the clinic. |
---|---|
ISSN: | 1476-3141 1752-6116 |
DOI: | 10.1080/14763141.2023.2275258 |