Characterising baseflow signature variability in the Yellow River Basin

Baseflow is pivotal in maintaining catchment ecological health and improving sustainable economic development. The Yellow River Basin (YRB) is northern China's most important water supplier. However, it faces water shortage due to synergistic effects between natural conditions and anthropogenic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-11, Vol.345, p.118565-118565, Article 118565
Hauptverfasser: Lyu, Shixuan, Guo, Chunling, Zhai, Yuyu, Huang, Mengdong, Zhang, Guotao, Zhang, Yongqiang, Cheng, Lei, Liu, Qiang, Zhou, Yuyan, Woods, Ross, Zhang, Junlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Baseflow is pivotal in maintaining catchment ecological health and improving sustainable economic development. The Yellow River Basin (YRB) is northern China's most important water supplier. However, it faces water shortage due to synergistic effects between natural conditions and anthropogenic activities. Investigating baseflow characteristics quantitively is, therefore, beneficial to promoting the sustainable development of the YRB. In this study, daily ensemble means baseflow data derived from four revised baseflow separation algorithms (i.e., the United Kingdom Institute of Hydrology (UKIH), Lyne-Hollick, Chapman-Maxwell, and Eckhardt methods) - was obtained from 2001 to 2020. Thirteen baseflow dynamics signatures were extracted to investigate baseflow spatiotemporal variations and their determinants across the YRB. The main findings were: (1) There were significant spatial distribution patterns of baseflow signatures, and most signatures had higher values in upstream and downstream reaches than in the middle reaches. There were also mixing patterns with higher values in middle and downstream reaches simultaneously. (2) The magnitude of temporal variation in baseflow signatures was most strongly correlated with catchment terrain (r = −0.4), vegetation growth (r > 0.3), and cropland coverage (r > 0.4). (3) There was a strong synergistic effect of multiple factors (e.g., soil textures, precipitation and vegetation conditions) on baseflow signature values. This study provided a heuristic evaluation of baseflow characteristics in the YRB, contributing to water resources management in the YRB and similar catchments. •Baseflow was simulated by four baseflow separation algorithms and showed a consistent result in the whole YRB.•Baseflow characteristics was firstly evaluated by thirteen baseflow signatures in YRB.•Significant spatial distribution patterns of baseflow signatures can be found.•Baseflow processes were mainly affected by soil textures, precipitation and vegetation in YRB.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.118565