Enhanced prediction of RNA solvent accessibility with long short-term memory neural networks and improved sequence profiles
Abstract Motivation The de novo prediction of RNA tertiary structure remains a grand challenge. Predicted RNA solvent accessibility provides an opportunity to address this challenge. To the best of our knowledge, there is only one method (RNAsnap) available for RNA solvent accessibility prediction....
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-05, Vol.35 (10), p.1686-1691 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
The de novo prediction of RNA tertiary structure remains a grand challenge. Predicted RNA solvent accessibility provides an opportunity to address this challenge. To the best of our knowledge, there is only one method (RNAsnap) available for RNA solvent accessibility prediction. However, its performance is unsatisfactory for protein-free RNAs.
Results
We developed RNAsol, a new algorithm to predict RNA solvent accessibility. RNAsol was built based on improved sequence profiles from the covariance models and trained with the long short-term memory (LSTM) neural networks. Independent tests on the same datasets from RNAsnap show that RNAsol achieves the mean Pearson’s correlation coefficient (PCC) of 0.43/0.26 for the protein-bound/protein-free RNA molecules, which is 26.5%/136.4% higher than that of RNAsnap. When the training set is enlarged to include both types of RNAs, the PCCs increase to 0.49 and 0.46 for protein-bound and protein-free RNAs, respectively. The success of RNAsol is attributed to two aspects, including the improved sequence profiles constructed by the sequence-profile alignment and the enhanced training by the LSTM neural networks.
Availability and implementation
http://yanglab.nankai.edu.cn/RNAsol/
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bty876 |