Inhibitory effect of plain and functionalized graphene nanoplateles on hen egg white lysozyme fibrillation

Protein fibrillation is a phenomenon associated with misfolding and the production of highly ordered nanofibrils, which may cause serious degenerative diseases such as Parkinson’s disease, Alzheimer's disease, and type 2 diabetes. Upon contact with biological fluids, the nanomaterials are immed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-10, Vol.230, p.113487-113487, Article 113487
Hauptverfasser: Abbaspour, Sakineh, Alijanvand, Saeid Hadi, Morshedi, Dina, Shojaosadati, Seyed Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein fibrillation is a phenomenon associated with misfolding and the production of highly ordered nanofibrils, which may cause serious degenerative diseases such as Parkinson’s disease, Alzheimer's disease, and type 2 diabetes. Upon contact with biological fluids, the nanomaterials are immediately covered by proteins and interact with them. In this study, the effects of Graphene NanoPlateles (Plain-GNPs) and their modified forms with a carboxyl group (GNPs -COOH) and an amine group (GNPs -NH2) are evaluated on the fibrillation process of Hen Egg White Lysozyme (HEWL). The fibrillation process of HEWL was studied using thioflavin-T, Circular Dichroism spectrometry, and Atomic Force Microscopy. Plain-GNPs significantly decreased the fibrillation process at different stages, including nucleation, exponential fibrillation phases, and end-mature fibril products. However, GNPs-COOH and GNPs-NH2 affected the final fluorescence of ThT. The species formed in the presence of Plain-GNPs showed less toxicity in SH-SY5Y cells, which could be applicable for therapeutic purposes. [Display omitted] •Plain-GNPs significantly inhibit HEWL fibrillation.•Plain-GNPs decreases the toxicity of aggregates by stabilizing the folded native state of HEWL.•The surface chemistry causes a significant change in the interaction between HEWL and GNPs.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2023.113487