Microbial production of trans-aconitic acid
Trans-aconitic acid (TAA) is a promising bio-based chemical with the structure of unsaturated tricarboxylic acid, and also has the potential to be a non-toxic nematicide as a potent inhibitor of aconitase. However, TAA has not been commercialized because the traditional production processes of plant...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2023-07, Vol.78, p.183-191 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trans-aconitic acid (TAA) is a promising bio-based chemical with the structure of unsaturated tricarboxylic acid, and also has the potential to be a non-toxic nematicide as a potent inhibitor of aconitase. However, TAA has not been commercialized because the traditional production processes of plant extraction and chemical synthesis cannot achieve large-scale production at a low cost. The availability of TAA is a serious obstacle to its widespread application. In this study, we developed an efficient microbial synthesis and fermentation production process for TAA. An engineered Aspergillus terreus strain producing cis-aconitic acid and TAA was constructed by blocking itaconic acid biosynthesis in the industrial itaconic acid-producing strain. Through heterologous expression of exogenous aconitate isomerase, we further designed a more efficient cell factory to specifically produce TAA. Subsequently, the fermentation process was developed and scaled up step-by-step, achieving a TAA titer of 60 g L−1 at the demonstration scale of a 20 m3 fermenter. Finally, the field evaluation of the produced TAA for control of the root-knot nematodes was performed in a field trial, effectively reducing the damage of the root-knot nematode. Our work provides a commercially viable solution for the green manufacturing of TAA, which will significantly facilitate biopesticide development and promote its widespread application as a bio-based chemical.
[Display omitted]
•An efficient fungal cell factory was constructed to produce trans-aconitic acid (TAA).•The industrial fermentation process was developed, achieving a TAA titer of 60 g L−1.•The nematicidal activity of microbial produced TAA was tested in the field trial.•Green manufacturing of TAA will facilitate its applications as a bio-based chemical. |
---|---|
ISSN: | 1096-7176 1096-7184 |
DOI: | 10.1016/j.ymben.2023.06.007 |