Characterization of pH-induced conformational changes in recombinant DENV NS2B-NS3pro
The increasing frequency of Dengue is a cause of severe epidemics and therefore demands strategies for effective prevention, diagnosis, and treatment. DENV-protease is being investigated as a potential therapeutic target. However, due to the flat and highly charged active site of the DENV-protease,...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-12, Vol.253, p.126823-126823, Article 126823 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increasing frequency of Dengue is a cause of severe epidemics and therefore demands strategies for effective prevention, diagnosis, and treatment. DENV-protease is being investigated as a potential therapeutic target. However, due to the flat and highly charged active site of the DENV-protease, designing orthosteric medicines is very difficult. In this study, we have done a thorough analysis of pH-dependent conformational changes in recombinantly expressed DENV protease using various spectroscopic techniques. Our spectroscopic study of DENV protease (NS2B-NS3pro) at different pH conditions gives important insights into the dynamicity of structural conformation. At physiological pH, the DENV-protease exists in a random-coiled state. Lowering the pH promotes the formation of alpha-helical and beta-sheet structures i.e. gain of secondary structure as shown by Far-UV CD. The light scattering and Thioflavin T (ThT)-binding assay proved the aggregation-prone tendency of DENV-protease at pH 4.0. Further, the confocal microscopy image intensity showed the amorphous aggregate formation of DENV protease at pH 4.0. Thus, the DENV protease acquires different conformations with changes in pH conditions. Together, these results have the potential to facilitate the design of a conformation destabilizer-based therapeutic strategy for dengue fever. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.126823 |