Synthesis of waste limestone powder–based alkali-activated binder: experimental, optimization modeling, and eco-efficiency assessment
More than half of the CO 2 emissions during the manufacturing of ordinary Portland cement (OPC) occur due to the calcination of calcium carbonate in addition to burning of fossil fuel to power the process. Consequently, there is a concerted effort to decrease the carbon footprint associated with thi...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-03, Vol.30 (13), p.38443-38464 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | More than half of the CO
2
emissions during the manufacturing of ordinary Portland cement (OPC) occur due to the calcination of calcium carbonate in addition to burning of fossil fuel to power the process. Consequently, there is a concerted effort to decrease the carbon footprint associated with this process, by minimizing the use of OPC. In line with this trend, an attempt was made in the reported study to synthesize a novel alkali-activated binder using CaCO
3
-rich waste limestone powder (WLSP) as a precursor. Utilizing the Taguchi method, four important parameters were varied at three levels to optimize the alkali-activated mixture. Analysis of variance (ANOVA) of the obtained results was performed to assess the impact of each of the factors on the properties of the developed binder. To enhance the strength further, OPC was added as a partial replacement of WLSP. The binder was characterized using scanning electron microscopy. The results have indicated that alkaline activator to binder ratio, Na
2
SiO
3
to NaOH ratio, and sand to binder ratio of 0.575, 1.57, and 2.5, respectively, were the optimum to obtain satisfactory strength and workability with a 13.7-M NaOH activator solution. The incorporation of a small quantity of OPC in the mixture remarkably improved the density and strength of the alkali-activated-WLSP binder. Pirssonite (CaCO
3
.Na
2
CO
3
.2H
2
O) and C/N-A-S-H were the dominant mineral phases formed in the developed binder, particularly in the ones alkali-activated WLSP/OPC. In addition, the eco-efficiency assessment revealed that the WLSP is a promising low-carbon binder that can be used in developing more sustainable alkali-activated binder. The results have shown that the WLSP can be potentially utilized in developing binder that can be potentially used in the structural applications. |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-022-25006-0 |