Cross-continental evaluation of landscape-scale drivers and their impacts to fluvial fishes: Understanding frequency and severity to improve fish conservation in Europe and the United States

Fluvial fishes are threatened globally from intensive human landscape stressors degrading aquatic ecosystems. However, impacts vary regionally, as stressors and natural environmental factors differ between ecoregions and continents. To date, a comparison of fish responses to landscape stressors over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-11, Vol.897, p.165101-165101, Article 165101
Hauptverfasser: Üblacker, Maria M., Infante, Dana M., Cooper, Arthur R., Daniel, Wesley M., Schmutz, Stefan, Schinegger, Rafaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluvial fishes are threatened globally from intensive human landscape stressors degrading aquatic ecosystems. However, impacts vary regionally, as stressors and natural environmental factors differ between ecoregions and continents. To date, a comparison of fish responses to landscape stressors over continents is lacking, limiting understanding of consistency of impacts and hampering efficiencies in conserving fishes over large regions. This study addresses these shortcomings through a novel, integrative assessment of fluvial fishes throughout Europe and the conterminous United States. Using large-scale datasets, including information on fish assemblages from more than 30,000 locations on both continents, we identified threshold responses of fishes summarized by functional traits to landscape stressors including agriculture, pasture, urban area, road crossings, and human population density. After summarizing stressors by catchment unit (local and network) and constraining analyses by stream size (creeks vs. rivers), we analyzed stressor frequency (number of significant thresholds) and stressor severity (value of identified thresholds) within ecoregions across Europe and the United States. We document hundreds of responses of fish metrics to multi-scale stressors in ecoregions across two continents, providing rich findings to aid in understanding and comparing threats to fishes across the study regions. Collectively, we found that lithophilic species and, as expected, intolerant species are most sensitive to stressors in both continents, while migratory and rheophilic species are similarly strongly affected in the United States. Also, urban land use and human population density were most frequently associated with declines in fish assemblages, underscoring the pervasiveness of these stressors in both continents. This study offers an unprecedented comparison of landscape stressor effects on fluvial fishes in a consistent and comparable manner, supporting conservation of freshwater habitats in both continents and worldwide. [Display omitted] •Cross-continental analysis of more than 30,000 fish sampling sites•Hundreds of negative fish responses to human stressors were identified in the U.S and Europe.•Urbanization was one of the most pervasive human landscape stressors.•Fish metrics most sensitive to human landscape stressors were identified.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.165101