Foliar application of green synthesized ZnO nanoparticles reduced Cd content in shoot of lettuce
Though Zinc (Zn) supplementation can mitigate root-based Cadmium (Cd) uptake in plants, the impact of foliar-applied Zinc Oxide nanoparticles (ZnO NPs) on this process remains under-explored. This study investigates the influence of foliar-applied ZnO NPs on the growth of lettuce and its Cd uptake i...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2023-10, Vol.338, p.139589-139589, Article 139589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Though Zinc (Zn) supplementation can mitigate root-based Cadmium (Cd) uptake in plants, the impact of foliar-applied Zinc Oxide nanoparticles (ZnO NPs) on this process remains under-explored. This study investigates the influence of foliar-applied ZnO NPs on the growth of lettuce and its Cd uptake in Cd-contaminated soil in greenhouse setting. Green synthesized ZnO (G-ZnO) NPs (10 and 100 mg/L) using sweet potato leaf extracts were used, and compared with commercially available ZnO (C–ZnO) NPs (100 mg/L) for their efficacy. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used for G-ZnO NPs characterization. Shoot dry weight, antioxidant activity, and chlorophyll content were all negatively affected by Cd but positively affected by ZnO NPs application. ZnO NPs application resulted in a notable reduction in lettuce Cd uptake, with the highest reduction (43%) observed at 100 mg/L G-ZnO NPs. In the lettuce shoot, Zn and Cd concentration showed a significant inverse correlation (R2 = 0.79–0.9, P |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.139589 |