GC/QQQ coupling with metabolomics for selection of predicator of tea fermentation

Fermentation is the most crucial process for manufacture of black tea. Signature components were desired for the establishment of accurate prediction of fermentation degree. In this study, finished black teas were prepared using leaves that had been fermented for various times, and sensory quality e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food research international 2023-11, Vol.173, p.113273-113273, Article 113273
Hauptverfasser: Ye, Yingqing, Lin, Jiazheng, Yin, Junfeng, He, Hua-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fermentation is the most crucial process for manufacture of black tea. Signature components were desired for the establishment of accurate prediction of fermentation degree. In this study, finished black teas were prepared using leaves that had been fermented for various times, and sensory quality evaluation was performed. Tracking analysis of volatiles during fermentation was conducted to discriminate the iconic compounds. On the basis of both the sensory evaluation results and the enzymatic oxidation traits of fermentation, the ratio of β-cyclocitral to γ-pylpyrone was proposed as an indicator. A positive correlation was observed between this ratio and the sensory score of finished black tea with varied duration of fermentation, and the correlation coefficient was 0.78. Furthermore, widely plant-targeted metabolomics was applied to cognize the fermentation. Comparative analysis of metabolites was conducted by category, and special attention was paid to flavonoids and terpenes. Significant metabolic differences emerged discriminatively. The results would be useful for intelligent modulation of the manufacture of black tea. [Display omitted] •Ratio of β-cyclocitral to γ-pylpyrone was proposed to be the symbol to predict fermentation.•Analysis of volatile files and sensory evaluation of finished black teas were performed.•Widely plant-targeted metabolomics and classification analysis were applied during fermentation. Fermentation is the most crucial process for manufacture of black tea. Signature components were desired for the establishment of accurate prediction of fermentation degree. In this study, finished black teas were prepared using leaves that had been fermented for various times, and sensory quality evaluation was performed. Tracking analysis of volatiles during fermentation was conducted to discriminate the iconic compounds. On the basis of both the sensory evaluation results and the enzymatic oxidation traits of fermentation, the ratio of β-cyclocitral to γ-pylpyrone was proposed as an indicator. A positive correlation was observed between this ratio and the sensory score of finished black tea with varied duration of fermentation, and the correlation coefficient was 0.78. Furthermore, widely plant-targeted metabolomics was applied to cognize the fermentation. Comparative analysis of metabolites was conducted by category, and special attention was paid to flavonoids and terpenes. Significant metabolic differences emerged discriminatively. The re
ISSN:0963-9969
1873-7145
DOI:10.1016/j.foodres.2023.113273