Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application

Nanocomposites of polypropylene with organically modified clays were compounded in a twin‐screw extruder by a two‐step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PPgMA), and organically modified clay. The effect of PPgMA compatibilizers, includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2005-10, Vol.98 (1), p.427-433
Hauptverfasser: Hong, Chae Hwan, Lee, Young Bum, Bae, Jin Woo, Jho, Jae Young, Nam, Byeong Uk, Hwang, Tae Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocomposites of polypropylene with organically modified clays were compounded in a twin‐screw extruder by a two‐step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PPgMA), and organically modified clay. The effect of PPgMA compatibilizers, including PH‐200, Epolene‐43, Polybond‐3002, and Polybond‐3200, with a wide range of maleic anhydride (MA) content and molecular weight was examined. Nanocomposites' morphologies and mechanical properties such as stiffness, strength, and impact resistance were investigated. X‐ray diffraction patterns showed that the dispersion morphology of clay particles seemed to be determined in the first compounding step and the further exfoliation of clays didn't occur in the second compounding step. As the ratio of PPgMA to clay increased, the clay particles were dispersed more uniformly in the matrix resin. As the dispersibility of clays was enhanced, the reinforcement effect of the clays increased; however, impact resistance decreased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 427–433, 2005
ISSN:0021-8995
1097-4628
DOI:10.1002/app.21800