Modeling activity scheduling time horizon: Duration of time between planning and execution of pre-planned activities

Growing recognition that observed travel patterns are the result of an underlying activity scheduling process has resulted in a new stream of data collection and modeling efforts. Of particular focus is the planning or sequencing of activity scheduling decisions over time that precede actual executi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part A, Policy and practice Policy and practice, 2006-07, Vol.40 (6), p.475-490
Hauptverfasser: Mohammadian, Abolfazl, Doherty, Sean T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Growing recognition that observed travel patterns are the result of an underlying activity scheduling process has resulted in a new stream of data collection and modeling efforts. Of particular focus is the planning or sequencing of activity scheduling decisions over time that precede actual execution of activities/trips. Understanding and potentially modeling these sequences offers particular promise, as strong interdependencies in activity/travel choices likely exist. In practice, however, a fixed order of sequencing by activity type is often assumed that overlooks the strong interdependencies in activity/travel choices and can be misleading. This study presents the process of developing parametric and non-parametric hazard models to predict the duration of time between planning and execution of pre-planned activities based on attributes of activity and characteristics of decision maker. Modeling results suggest that activity type alone may not suffice to fully explain how activities are planned. Rather, the nature of the activity and several overriding personal and situational factors play an important role. This will make the model more amenable to a variety of people and situations and will make it more sensitive to emerging policy action scenarios.
ISSN:0965-8564
1879-2375
DOI:10.1016/j.tra.2005.08.005