Integrated Direct-to-Biology Platform for the Nanoscale Synthesis and Biological Evaluation of PROTACs
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that co-opt the cell's natural proteasomal degradation mechanisms to degrade undesired proteins. A challenge associated with PROTACs is the time and resource-intensive optimization; thus, the development of high-throughpu...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2023-11, Vol.66 (22), p.15437-15452 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that co-opt the cell's natural proteasomal degradation mechanisms to degrade undesired proteins. A challenge associated with PROTACs is the time and resource-intensive optimization; thus, the development of high-throughput platforms for their synthesis and biological evaluation is required. In this study, we establish an ultra-high-throughput experimentation (ultraHTE) platform for PROTAC synthesis, followed by direct addition of the crude reaction mixtures to cellular degradation assays without any purification. This 'direct-to-biology' (D2B) approach was validated and then exemplified in a medicinal chemistry campaign to identify novel BRD4 PROTACs. Using the D2B platform, the synthesis of 650 PROTACs was carried out in a 1536-well plate, and subsequent biological evaluation was performed by a single scientist in less than 1 month. Due to its ability to hugely accelerate the optimization of new degraders, we anticipate our platform will transform the synthesis and testing of PROTACs. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.3c01604 |