Histone acetylation is associated with pupal diapause in cotton bollworm, Helicoverpa armigera

BACKGROUND Diapause is an environmentally preprogrammed period of arrested development that is important to insect survival and population growth. Histone acetylation, an epigenetic modification, has several biological functions, but its role in agricultural pest diapause is unknown. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2024-03, Vol.80 (3), p.1400-1411
Hauptverfasser: Lu, Qin, Li, Yan, Liao, Jing, Ni, Zhaohong, Xia, Shunchao, Yang, Maofa, Li, Haiyin, Guo, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Diapause is an environmentally preprogrammed period of arrested development that is important to insect survival and population growth. Histone acetylation, an epigenetic modification, has several biological functions, but its role in agricultural pest diapause is unknown. In this study, we investigated the role of histone H3 acetylation in the diapause of Helicoverpa armigera. RESULTS The histone H3 gene of H. armigera was cloned, and multiple sequence alignment of amino acids revealed that the potential lysine acetylation sites were highly conserved across species. Investigation of histone H3 acetylation levels in diapause‐ and nondiapause‐type pupae showed that acetylation levels were down‐regulated in diapause‐type pupae and were lower in diapausing pupae compared to nondiapause pupae. By screening the genome, six histone acetyltransferase (HAT) and eight histone deacetylase (HDAC) genes responsible for antagonizing catalytic histone acetylation modifications were identified in H. armigera, and most of them exhibited different expression patterns between diapause‐ and nondiapause‐type pupae. To elucidate the effect of histone H3 acetylation on diapause in H. armigera, the diapause pupae were injected with the histone acetylation activator trichostatin A (TSA). The results indicated that TSA injection increased the levels of histone H3 acetylation, causing the diapausing pupae to revert to development. Furthermore, transcriptome analysis revealed that 259 genes were affected by TSA injection, including genes associated with metabolism, resistance, and immunological responses. CONCLUSION These results suggest that histone acetylation is inseparably related to the pupal diapause of H. armigera, which promises to be a potential target for pest control. © 2023 Society of Chemical Industry. The role of histone acetylation is of utmost importance in the pupal diapause of Helicoverpa armigera. The up‐regulation of histone acetylation is instrumental in promoting pupal development, while the down‐regulation of histone acetylation triggers the pupal diapause.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.7870