Supra‐Photothermal CO2 Methanation over Greenhouse‐Like Plasmonic Superstructures of Ultrasmall Cobalt Nanoparticles
Improving the solar‐to‐thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy i...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-03, Vol.36 (9), p.e2308859-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improving the solar‐to‐thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse‐like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano‐greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra‐photothermal CO2 methanation performance with a record‐high rate of 2.3 mol gCo−1 h−1, close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.
A synergistic approach to enhance the efficiency of photothermal conversion while maintaining the excellent intrinsic catalytic reactivity for ultrasmall Co nanoparticles is demonstrated by integrating the “nano‐greenhouse effect” with plasmonic coupling. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202308859 |