Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo
Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially unde...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2002-09, Vol.3 (3), p.196-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 3 |
container_start_page | 196 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 3 |
creator | Fang, Y. Masaki, I. Horn, B. |
description | Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load. |
doi_str_mv | 10.1109/TITS.2002.802926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28868568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1033763</ieee_id><sourcerecordid>907993362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e84d1aeaf8b1dfac8adf74d311405785b17e35b2e169fdcee8cbfc20c2a2e8d33</originalsourceid><addsrcrecordid>eNqN0UtLxDAQB_AiCj7vgpfgQU9d82ja1JusT1jw4Ho1pMlkrXSbNUkFv70p9SAexFOS4TfDhH-WHRM8IwTXF8uH5dOMYkxnAtOallvZHuFc5BiTcnu80yKvMce72X4Ib6lacEL2spdr2MTXvFEBDIrKryCiAKs19FHF1vXIOo_aPkLXtatURB_w2uoOwiWyQxiBs8grozxSvUFN2zs9dOkVInhwh9mOVV2Ao-_zIHu-vVnO7_PF493D_GqRayZozEEUhihQVjTEWKWFMrYqDCOkwLwSvCEVMN5QIGVtjQYQurGaYk0VBWEYO8jOp7kb794HCFGu26DT0qoHNwRZ46quGStpkmd_SipEKXgp_gFpYnScePoLvrnB9-m7UoiiYIzTOiE8Ie1dCB6s3Ph2rfynJFiOAcoxQDkGKKcAU8vJ1NICwA_OWFUy9gX5I5hI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884433529</pqid></control><display><type>article</type><title>Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Y. ; Masaki, I. ; Horn, B.</creator><creatorcontrib>Fang, Y. ; Masaki, I. ; Horn, B.</creatorcontrib><description>Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2002.802926</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamical systems ; Dynamics ; Image segmentation ; Intelligent sensors ; Intelligent vehicles ; Machine vision ; Motion detection ; Object detection ; Radar ; Radar detection ; Radar imaging ; Robustness ; Segmentation ; Spatial resolution</subject><ispartof>IEEE transactions on intelligent transportation systems, 2002-09, Vol.3 (3), p.196-202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e84d1aeaf8b1dfac8adf74d311405785b17e35b2e169fdcee8cbfc20c2a2e8d33</citedby><cites>FETCH-LOGICAL-c382t-e84d1aeaf8b1dfac8adf74d311405785b17e35b2e169fdcee8cbfc20c2a2e8d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1033763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1033763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Y.</creatorcontrib><creatorcontrib>Masaki, I.</creatorcontrib><creatorcontrib>Horn, B.</creatorcontrib><title>Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Image segmentation</subject><subject>Intelligent sensors</subject><subject>Intelligent vehicles</subject><subject>Machine vision</subject><subject>Motion detection</subject><subject>Object detection</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Spatial resolution</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLxDAQB_AiCj7vgpfgQU9d82ja1JusT1jw4Ho1pMlkrXSbNUkFv70p9SAexFOS4TfDhH-WHRM8IwTXF8uH5dOMYkxnAtOallvZHuFc5BiTcnu80yKvMce72X4Ib6lacEL2spdr2MTXvFEBDIrKryCiAKs19FHF1vXIOo_aPkLXtatURB_w2uoOwiWyQxiBs8grozxSvUFN2zs9dOkVInhwh9mOVV2Ao-_zIHu-vVnO7_PF493D_GqRayZozEEUhihQVjTEWKWFMrYqDCOkwLwSvCEVMN5QIGVtjQYQurGaYk0VBWEYO8jOp7kb794HCFGu26DT0qoHNwRZ46quGStpkmd_SipEKXgp_gFpYnScePoLvrnB9-m7UoiiYIzTOiE8Ie1dCB6s3Ph2rfynJFiOAcoxQDkGKKcAU8vJ1NICwA_OWFUy9gX5I5hI</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Fang, Y.</creator><creator>Masaki, I.</creator><creator>Horn, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>20020901</creationdate><title>Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo</title><author>Fang, Y. ; Masaki, I. ; Horn, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e84d1aeaf8b1dfac8adf74d311405785b17e35b2e169fdcee8cbfc20c2a2e8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Image segmentation</topic><topic>Intelligent sensors</topic><topic>Intelligent vehicles</topic><topic>Machine vision</topic><topic>Motion detection</topic><topic>Object detection</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Y.</creatorcontrib><creatorcontrib>Masaki, I.</creatorcontrib><creatorcontrib>Horn, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Y.</au><au>Masaki, I.</au><au>Horn, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2002-09-01</date><risdate>2002</risdate><volume>3</volume><issue>3</issue><spage>196</spage><epage>202</epage><pages>196-202</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2002.802926</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2002-09, Vol.3 (3), p.196-202 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_miscellaneous_28868568 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Dynamical systems Dynamics Image segmentation Intelligent sensors Intelligent vehicles Machine vision Motion detection Object detection Radar Radar detection Radar imaging Robustness Segmentation Spatial resolution |
title | Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-based%20target%20segmentation%20for%20intelligent%20vehicles:%20fusion%20of%20radar%20and%20binocular%20stereo&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Fang,%20Y.&rft.date=2002-09-01&rft.volume=3&rft.issue=3&rft.spage=196&rft.epage=202&rft.pages=196-202&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2002.802926&rft_dat=%3Cproquest_RIE%3E907993362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884433529&rft_id=info:pmid/&rft_ieee_id=1033763&rfr_iscdi=true |