Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo

Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2002-09, Vol.3 (3), p.196-202
Hauptverfasser: Fang, Y., Masaki, I., Horn, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic environment interpretation is of special interest for intelligent vehicle systems. It is expected to provide lane information, target depth, and the image positions of targets within given depth ranges. Typical segmentation algorithms cannot solve the problems satisfactorily, especially under the high-speed requirements of a real-time environment. Furthermore, the variation of image positions and sizes of targets creates difficulties for tracking. In this paper, we propose a sensor-fusion method that can make use of coarse target depth information to segment target locations in video images. Coarse depth ranges can be provided by radar systems or by a vision-based algorithm introduced in the paper. The new segmentation method offers more accuracy and robustness while decreasing the computational load.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2002.802926