Experimental and theoretical study to control the heavy metals in solid waste and sludge during pyrolysis using modified expanded vermiculite
Na+/K+/Mg2+/Ca2+ expansion-modified vermiculite and calcination expansion (700 °C, 800 °C and 900 °C)-modified vermiculite (700-Mg-V, 800-Mg-V and 900-Mg-V) were prepared as additives to control the emission of five heavy metals (Zn, Cr, Cu, Pb, and Cd) during the pyrolysis of municipal sewage sludg...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-02, Vol.463, p.132885-132885, Article 132885 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Na+/K+/Mg2+/Ca2+ expansion-modified vermiculite and calcination expansion (700 °C, 800 °C and 900 °C)-modified vermiculite (700-Mg-V, 800-Mg-V and 900-Mg-V) were prepared as additives to control the emission of five heavy metals (Zn, Cr, Cu, Pb, and Cd) during the pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse. Mg2+-Modified vermiculite obtained via thermally activated calcination at 800 °C retained 65% of heavy metals from all raw materials at 450 °C. Zn, Cr, and Cu retained nearly 90%. Although modified vermiculite could reduce the ecological risk, Cd had an ecological risk level higher than Zn, Cr, Cu, and Pb. The fine textural properties, laminated morphology, and expansion capacity of modified vermiculite were positively correlated with its retention of heavy metals. Heavy metals interacted with the (002) surface of vermiculite, and the reactions were mainly concentrated near the 17-O and surrounding atoms. The heavy-metal monomers were less capable of binding to the (002) surface of vermiculite than the oxides and chlorides of heavy metals. The effect of heavy-metal oxides and chlorides binding to the (002) surface of vermiculite was related to heavy metals. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2023.132885 |