A Donnan potential model for metal sorption onto Bacillus subtilis

In this study, we conducted electrophoretic mobility, potentiometric titration, and metal sorption experiments to investigate the surface charge characteristics of Bacillus subtilis and the electrostatic interactions between metal cations and the cell surface electric field. Electrophoretic mobility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2004-09, Vol.68 (18), p.3657-3664
Hauptverfasser: Yee, Nathan, Fowle, David A., Ferris, F.Grant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we conducted electrophoretic mobility, potentiometric titration, and metal sorption experiments to investigate the surface charge characteristics of Bacillus subtilis and the electrostatic interactions between metal cations and the cell surface electric field. Electrophoretic mobility experiments performed as a function of pH and ionic strength show an isoelectric point of pH 2.4, with the magnitude of the electrokinetic potential increasing with increasing pH, and decreasing with increasing ionic strength. Potentiometric titration experiments conducted from pH 2.4 to 9 yield an average surface charge excess of 1.6 μmol/mg (dry mass). Corresponding cell wall charge density values were used to calculate the Donnan potential (Ψ DON) as function of pH and ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II), and Ba(II) exhibit strong ionic strength dependence, suggesting that the metal ions are bound to the bacterial cell wall via an outer-sphere complexation mechanism. Intrinsic metal sorption constants for the sorption reactions were determined by correcting the apparent sorption constant with the Boltzmann factor. A 1:2 metal-ligand stoichiometry provides the best fit to the experimental data with log K 2 int values of 5.9 ± 0.3, 6.0 ± 0.2, 6.2 ± 0.2 for Ca(II), Sr(II), and Ba(II) respectively. Electrophoretic mobility measurements of cells sorbed with Ca(II), Sr(II), and Ba(II) support the 1:2 sorption stoichiometry. These results indicate that electrical potential parameters derived from the Donnan model can be applied to predict metal binding onto bacterial surfaces over a wide range of pH and ionic strength conditions.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2004.03.018